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Semi-supervised learning

« Combine supervised and unsupervised learning

« Long history (see book by Chapelle), renewed interest in recent years (along
with self-supervised learning)
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Recent successful approaches

Different flavors & ingredients:

— self-training / pseudolabeling (teacher-student)
— consistency regularization

— aggressive data augmentations

See UDA, MixMatch, FixMatch, Meta Pseudo Labels in the last 2-3 years
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A pragmatic perspective

(almost)

Underlying assumption of SSL work: we know nothing about unlabeled examples

But.. is that true? Often we know a lot! We can CHEAT a little bit.

_ Suprisingly often, we can find “target consistent” groups in our unlabeled data,
where the label is consistent, although unknown.




A few examples

. Spatially
+& aligned
images
(same
location)
Different point :
of views of the
same scene

Different images
from the same
device

Similar ideas have also been exploited for self-supervised learning approaches
(e.g., Time-Contrastive Networks, Geography-Aware Self-supervised Learning)
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DSSL coreidea

For each batch:
N labeled examples
M target-consistent groups of unlabeled examples
Compute:
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Experiments

3 practical cases on distributed cameras + 1 bonus

Verizon confidential and proprietary. Unauthorized disclosure, reproduction or other use prohibited.



Weather classification

Task: classify weather in dashcam images

Thousands of unlabeled short videos

Weather doesn’t change locally: frames from the
same video are “target-consistent”.

Data from BDD100k B




Weather classification

SSL baseline = FixMatch “with no bells and whistles”
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Ego-vehicle segmentation

Task: segment ego-vehicle in dashcam images

Millions of unlabeled images (internal dataset)

Camera position doesn’t change: frames from the
same device are “target-consistent”.
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Vehicle classification

Streams of IMU + GPS data from connected vehicles Vehicle type doesn’t change: data
) i collected from the same device over
Task: what kind of vehicle generated the data? (10 classes) time are “target-consistent”,

For a subset of vehicles, we know make + model.
Labeling more data is not possible!
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Vehicle classification

These are not images: no standard recipe for
data augmentations

We used strong augmentations for IMU+GPS
data that worked well for other tasks (even
self-supervised learning)
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They’re sufficient for DSSL, apparently not
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Bonus: CIFAR10 & CIFAR100 (proof of concept)

Standard setup: only use a subset as “labeled”

Assume an oracle can tell us, for each batch of unlabeled data, which samples belong to the same

class (we're obviously cheating!)

Only DSSL CIFAR10 CIFAR100

uses the extra

information 250 labels 4000 labels 2500 labels 10000 labels
DSSL * = 96.75+028  96.80+0.03 76.50+0.02 76.89+0.01 Same
FixMatch (RA) *T 94.30+045  95.75+005  66.51+032 72.41+0.13 implementation
Meta Pseudo Labels’ - 96.1140.07 - -
FixMatch (CTA) T 94.93+0.33 95.69+0.15 71.36+0.24 76.82+0.11 _
MixMatch | 88.951086  93.58+010  60.06+037 71.69+033 | Publishedresuits
UDA f O1.18+1.08 95.12+0.18 66.87+0.22 75.540.25

DSSL is a simple yet effective strategy to exploit domain knowledge in SSL
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