Domain-based semi-supervised learning Exploiting label invariance in unlabeled data from distributed cameras

Leonardo Taccari

leonardo.taccari@verizonconnect.com

🕑 @leotac

verizon connect

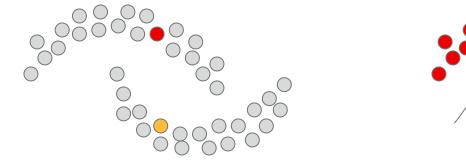
ICCV-IWDSC 2021

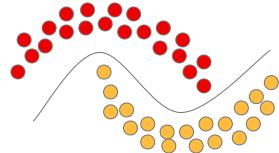
Who I am

- Scientist @ Verizon Connect, part of the Verizon group
- Connected things (vehicles, assets) for commercial customers (B2B)
- · Millions of tracked items across the world with GPS and cameras
- Data science/ML group based in Florence, Italy

Semi-supervised learning

- Combine supervised and unsupervised learning
- Long history (see book by Chapelle), renewed interest in recent years (along with *self-supervised learning*)



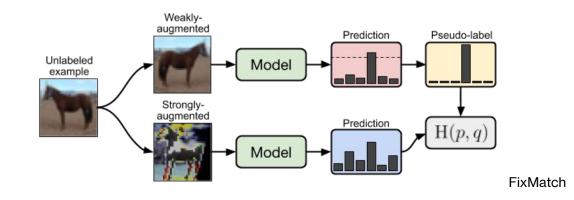


Recent successful approaches

Different flavors & ingredients:

- self-training / pseudolabeling (teacher-student)
- consistency regularization
- aggressive data augmentations

See UDA, MixMatch, FixMatch, Meta Pseudo Labels in the last 2-3 years



A pragmatic perspective

Underlying assumption of SSL work: we know **nothing** about unlabeled examples

But.. is that true? Often we know a lot! We can CHEAT a little bit.

Suprisingly often, we can find "**target consistent**" groups in our unlabeled data, where the label is *consistent*, although *unknown*.

A few examples

Different point of views of the same scene

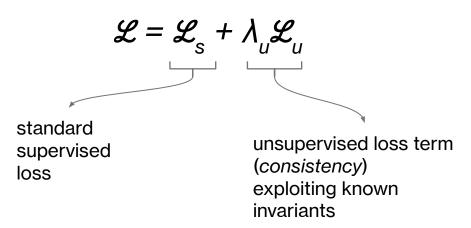
Spatially aligned images (same location)

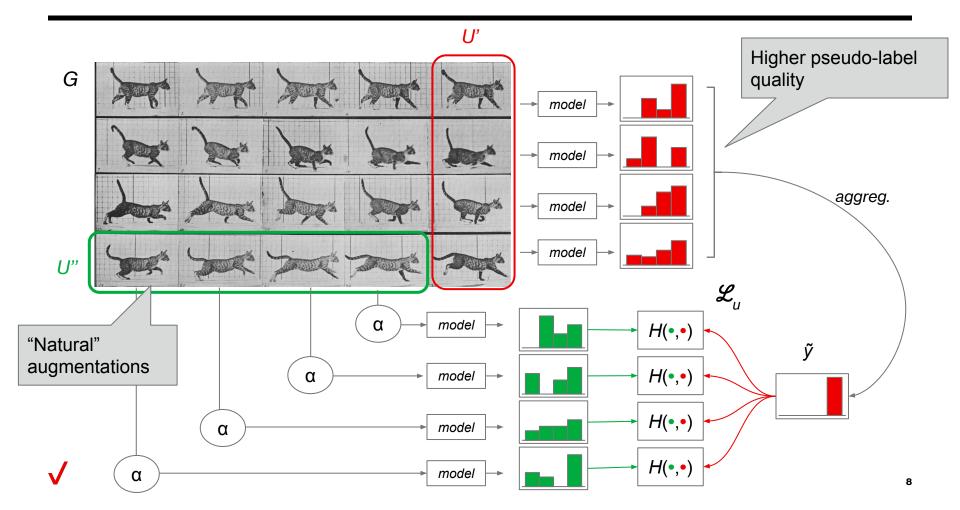
Different images from the same device

Similar ideas have also been exploited for **self-supervised learning** approaches (e.g., Time-Contrastive Networks, Geography-Aware Self-supervised Learning)

DSSL core idea

For each batch: N labeled examples M target-consistent groups of unlabeled examples Compute:





Experiments

3 practical cases on distributed cameras + 1 bonus

Weather classification

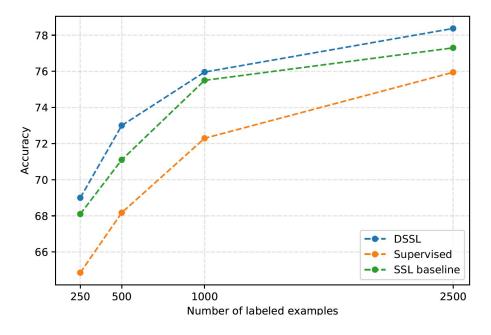
Task: classify weather in dashcam images

Thousands of unlabeled short videos

Weather doesn't change locally: frames from the same video are "target-consistent".

Weather classification

SSL baseline ≈ FixMatch "with no bells and whistles"



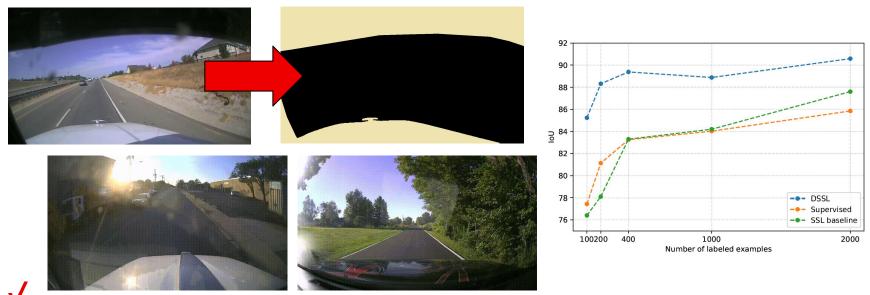
DSSL (kind of) works even with no data augmentation at all

	B_u	K', K''	Augmentation	Accuracy
DSSL	8	(4, 4)	RandAugment	73.0
SSL baseline	32	-	RandAugment	71.1
Supervised	-	-	RandAugment	68.2
DSSL	8	(4, 4)	Weak	70.9 (-2.1)
SSL baseline	32	-	Weak	68.2 (-2.9)
Supervised	-	-	Weak	66.1 (-2.1)
DSSL	8	(4, 4)	None	70.0 (-3.0)
SSL baseline	32	-	None	63.8 (-7.3)
Supervised	-	-	None	64.6 (-3.6)

Ego-vehicle segmentation

Task: segment *ego-vehicle* in dashcam imagesMillions of unlabeled images (internal dataset)

Camera position doesn't change: frames from the same device are "target-consistent".



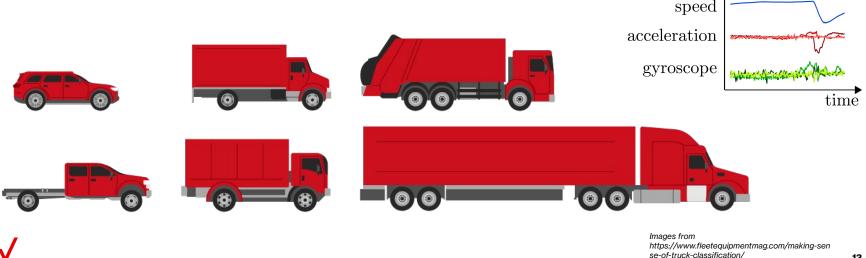
Vehicle classification

Streams of IMU + GPS data from connected vehicles

Task: what kind of vehicle generated the data? (10 classes)

For a subset of vehicles, we know make + model. Labeling *more* data is not possible!

```
Vehicle type doesn't change: data collected from the same device over time are "target-consistent".
```

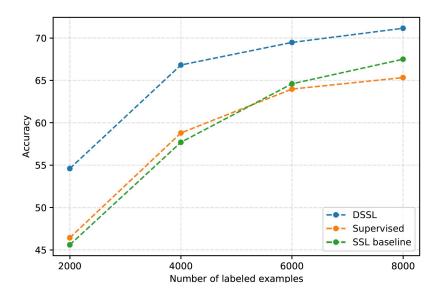


Vehicle classification

These are not images: no **standard recipe** for data augmentations

We used strong augmentations for IMU+GPS data that worked well for other tasks (even self-supervised learning)

They're sufficient for DSSL, apparently not for the SSL baseline



Bonus: CIFAR10 & CIFAR100 (proof of concept)

Standard setup: only use a subset as "labeled"

Assume an **oracle** can tell us, for each batch of unlabeled data, which samples belong to the same class (we're obviously cheating!)

Only DSSL uses the extra	CIFAR10		CIFAR100		-
information	250 labels	4000 labels	2500 labels	10000 labels	7
DSSL *	96.75±0.28	$96.80{\scriptstyle\pm0.03}$	$76.50{\scriptstyle\pm0.02}$	$\textbf{76.89}{\scriptstyle \pm 0.01}$	Same
FixMatch (RA) * [†]	$94.30{\scriptstyle \pm 0.45}$	$95.75{\scriptstyle\pm0.05}$	$66.51{\scriptstyle\pm0.32}$	$72.41{\scriptstyle\pm0.13}$	implementation
Meta Pseudo Labels [†]	-	$96.11{\scriptstyle \pm 0.07}$	-	_	
FixMatch (CTA) [†]	$94.93{\scriptstyle\pm0.33}$	$95.69{\scriptstyle \pm 0.15}$	$71.36{\scriptstyle \pm 0.24}$	$76.82{\scriptstyle \pm 0.11}$	
MixMatch [†]	$88.95{\scriptstyle \pm 0.86}$	$93.58{\scriptstyle\pm0.10}$	$60.06{\scriptstyle \pm 0.37}$	$71.69{\scriptstyle \pm 0.33}$	 Published results
UDA †	$91.18{\scriptstyle\pm1.08}$	$95.12{\scriptstyle\pm0.18}$	$66.87{\scriptstyle\pm0.22}$	$75.5{\scriptstyle\pm0.25}$	

DSSL is a simple yet effective strategy to exploit domain knowledge in SSL

15

Domain-based semi-supervised learning Exploiting label invariance in unlabeled data from distributed cameras

Leonardo Taccari

leonardo.taccari@verizonconnect.com

🕑 @leotac

verizon connect

ICCV-IWDSC 2021

