Deep Quaternion Pose Proposals for 6D Object Pose Tracking

Mateusz Majcher, Bogdan Kwolek

11 October, IWDSC 2021

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology

Problem

Pose Tracking - Estimating the 6-DoF pose (3D rotations and 3D translations) of an object with respect to the camera with additional informations from previous frames.

Fig. 1: Examples of illumination differences and similarity of poses

Two main CNN-based approaches:

Two main CNN-based approaches:

Direct 6D pose regression

[Xiang et al, 2018]

Two main CNN-based approaches:

[Xiang et al, 2018]

Predicting 2D key-point locations

[Rad et al, 2017]

Two main CNN-based approaches:

Predicting 2D key-point locations

[Rad et al, 2017]

Most existing methods output a single guess of object's pose – we want a distribution of object poses.

Our approach

- We present a 6D object pose tracker, which uses quaternion pose distributions.
- We propose an unit quaternion representation of rotational state space for a particle filter and particle swarm optimization.
- A common Siamese neural network is employed to guide the particles.
- Our algorithm was evaluated on Nvidia Jetson AGX Xavier.

Quaternion

Represented as numbers with one real part and three distinct imaginary parts:

$$\boldsymbol{q} = q_w + q_x i + q_y j + q_z k$$

where q_w , q_x , q_y , q_z are real numbers and *i*, *j*, *k* satisfy:

$$i^2 = j^2 = k^2 = ijk = -1$$

Fig. 1: Quaternion visualization

Quaternion Particle Filter

- Monte Carlo method
- Unit quaternion representation of rotation state space
- Translation vector in Euclidean
 space
- Weights are calculated on the basis of a probabilistic observation model

Fig. 2: Prior distribution

Fig. 3: Distribution after resampling

Quaternion Particle Swarm Optimization

- Population-based optimization method
- Iteratively tries to improve a candidate solution with respect to a fitness measure
- Particles are clustered using k-means++ algorithm

Fig. 4: K-means clusters

Fig. 5: After execution of PSO

Siamese Neural Network

Fig. 6: Architecture of Siamese neural network for prediction of 6D pose of the object

The loss function is sum of the following components:

The loss function is sum of the following components:

The loss function is sum of the following components:

The loss function is sum of the following components:

M. Majcher, B. Kwolek

[Quaternion, Translation]

Fig. 7: Q-PF-PSO supported with Siamese neural network-based object pose predictions

[Quaternion, Translation]

Fig. 7: Q-PF-PSO supported with Siamese neural network-based object pose predictions

[Quaternion, Translation]

Fig. 7: Q-PF-PSO supported with Siamese neural network-based object pose predictions

Fig. 7: Q-PF-PSO supported with Siamese neural network-based object pose predictions

We evaluated our algorithm on freely available OPT benchmark dataset and our own dataset.

Fig. 9: Objects from OPT dataset

view, ADD [%]	House (nS)	House	Ironman (nS)	Ironman
Behind, 10%	$85 {\pm} 2.07$	82 ± 2.53	64 ± 2.29	77 ± 3.06
Behind, 20%	$99{\pm}0.51$	97±1.68	$91{\pm}1.62$	$95 {\pm} 2.06$
Left, 10%	$81{\pm}1.52$	76 ± 2.58	35 ± 5.56	42 ± 3.37
Left, 20%	$97{\pm}1.34$	$98{\pm}1.34$	$66 {\pm} 6.77$	$69 {\pm} 3.82$
Right, 10%	$55 {\pm} 5.13$	75±2.02	46 ± 5.15	$56 {\pm} 4.34$
Right, 20%	$74{\pm}7.20$	96±1.80	73 ± 6.73	$79{\pm}5.04$
Front, 10%	53 ± 3.66	82±1.14	55 ± 6.02	$68 {\pm} 3.45$
Front, 20%	81 ± 5.40	97±1.10	73 ± 5.94	$83{\pm}3.29$
Average, 10%	68	79	50	61
Average, 20%	88	97	76	82

Table 1: Tracking scores (nS – no Siamese)

AUC score [%]	House	Ironman	Jet	Bike	Chest	Soda
PWP3D	3.58	3.92	5.81	5.36	5.55	5.87
UDP	5.97	5.25	2.34	6.10	6.79	8.49
ElasticFusion	2.70	1.69	1.86	1.57	1.53	1.90
Reg. G-N.	10.15	11.99	13.22	11.90	11.76	8.86
w/o Siamese	11.52	9.26	9.19	10.81	6.93	6.61
Siamese for each	13.68	10.59	10.37	12.36	7.80	8.60
Siamese for all	13.27	10.32	10.33	11.88	7.60	8.90

Table 2: AUC scores in FreeMotion scenario

We evaluated our algorithm on freely available OPT benchmark dataset and our own dataset.

Fig. 9: Objects from OPT dataset

view, ADD [%]	House (nS)		House		House		Ironman (nS)	Ir	onman		
Behind, 10%	$85 {\pm} 2.07$	82	82±2.53		82±2.53		$82{\pm}2.53$		64 ± 2.29	7	7 ± 3.06
Behind, 20%	$99{\pm}0.51$	97	$97{\pm}1.68$		$97{\pm}1.68$		$91{\pm}1.62$	95	5 ± 2.06		
Left, 10%	$81 {\pm} 1.52$	76 ± 2.58		$76 {\pm} 2.58$		8	35 ± 5.56	42	2 ± 3.37		
Left, 20%	$97{\pm}1.34$	$98{\pm}1.34$		$98{\pm}1.34$		$98{\pm}1.34$		4	$66 {\pm} 6.77$	69	9 ± 3.82
Right, 10%	$55 {\pm} 5.13$	75±2.02		75±2.02		$75\pm2.02 \parallel 46\pm5.15$		50	5 ± 4.34		
Right, 20%	$74{\pm}7.20$	96±1.80		0	73 ± 6.73	79	9 ± 5.04				
Front, 10%	53 ± 3.66	82	$82{\pm}1.14$		55 ± 6.02	68	3 ± 3.45				
Front, 20%	81 ± 5.40	9	7+1.1	0	73 ± 5.94	8.	3 ± 3.29				
Average, 10%	68		79		50		61				
Average, 20%	88		97		76		82				

Table 1: Tracking scores (nS – no Siamese)

AUC score [%]	House	Ironman	Jet	Bike	Chest	Soda
PWP3D	3.58	3.92	5.81	5.36	5.55	5.87
UDP	5.97	5.25	2.34	6.10	6.79	8.49
ElasticFusion	2.70	1.69	1.86	1.57	1.53	1.90
Reg. G-N.	10.15	11.99	13.22	11.90	11.76	8.86
w/o Siamese	11.52	9.26	9.19	10.81	6.93	6.61
Siamese for each	13.68	10.59	10.37	12.36	7.80	8.60
Siamese for all	13.27	10.32	10.33	11.88	7.60	8.90

Table 2: AUC scores in FreeMotion scenario

We evaluated our algorithm on freely available OPT benchmark dataset and our own dataset.

Fig. 9: Objects from OPT dataset

view, ADD [%]	House (nS)	House		House		;	Ironman (nS)	Ir	onman				
Behind, 10%	$85 {\pm} 2.07$	$82{\pm}2.53$		3	64 ± 2.29	7′	7 ± 3.06						
Behind, 20%	$99{\pm}0.51$	97	$97{\pm}1.68$		$97{\pm}1.68$		$91{\pm}1.62$	9	5 ± 2.06				
Left, 10%	$81{\pm}1.52$	76 ± 2.58		76 ± 2.58		76 ± 2.58		8	35 ± 5.56	42	2 ± 3.37		
Left, 20%	$97{\pm}1.34$	98±1.34		$98{\pm}1.34$		$98{\pm}1.34$		$98{\pm}1.34$		4	$66 {\pm} 6.77$	6	9 ± 3.82
Right, 10%	$55 {\pm} 5.13$	75 ± 2.02		75±2.02		75 ± 2.02		2	46 ± 5.15	50	5 ± 4.34		
Right, 20%	$74{\pm}7.20$	$96{\pm}1.80$		$0 \mid 0$	73 ± 6.73	79	9 ± 5.04						
Front, 10%	53 ± 3.66	82 ± 1.14		4	55 ± 6.02	68 ± 3.45							
Front, 20%	81 ± 5.40	9	7+1.1	0	73 ± 5.94	8	3 ± 3.29						
Average, 10%	68		79		50		61						
Average, 20%	88		97		76		82						

Table 1: Tracking scores (nS – no Siamese)

AUC score [%]	House	Ironman	Jet	Bike	Chest	Soda
PWP3D	3.58	3.92	5.81	5.36	5.55	5.87
UDP	5.97	5.25	2.34	6.10	6.79	8.49
ElasticFusion	2.70	1.69	1.86	1.57	1.53	1.90
Reg. G-N.	10.15	11.99	13.22	11.90	11.76	8.86
w/o Siamese	11.52	9.26	9.19	10.81	6.93	6.61
Siamese for each	13.68	10.59	10.37	12.36	7.80	8.60
Siamese for all	13.27	10.32	10.33	11.88	7.60	8.90

Table 2: AUC scores in FreeMotion scenario

AGH

Fig. 10: Objects from our dataset

	PC	Jetson
U-Net	0.040	0.020
Keypoints	0.035	0.040
Siamese	0.030	0.007
k-means++	0.005	0.010
PSO 200p. 3 iter.	0.037	0.060
PSO 10p. 10 iter.	0.026	0.040
overheads	0.017	0.023
Total	0.190	0.200

Table 3: Running times

	Avg.,	Avg,
tracking score [%]	ADD	ADD
	10%	20%
drill w/o Siam.	80	97
drill with Siam. sep.	83	96
drill with Siam. com	84	94
frog w/o Siam.	65	79
frog with Siam. sep.	76	86
frog with Siam. com.	75	88
pig w/o Siam.	61	81
pig with Siam. sep.	68	80
pig with Siam. com.	66	82
duck w/o Siam.	72	90
duck with Siam. sep.	75	90
duck with Siam. com.	77	90
ext. w/o Siam.	54	70
ext. with Siam. sep.	63	76
ext. with Siam. com.	62	74
mult. w/o Siam.	67	79
mult. with Siam. sep.	69	80
mult. with Siam. com.	68	81

1 .

Table 4: ADD scores on our dataset

AGH

Fig. 10: Objects from our dataset

	PC	Jetson
U-Net	0.040	0.020
Keypoints	0.035	0.040
Siamese	0.030	0.007
k-means++	0.005	0.010
PSO 200p. 3 iter.	0.037	0.060
PSO 10p. 10 iter.	0.026	0.040
overheads	0.017	0.023
Total	0.190	0.200

Table 3: Running times

	Avg.	, Avg,
tracking score [%]	ADD	ADD
	10%	20%
drill w/o Siam.	80	97
drill with Siam. sep.	83	96
drill with Siam. com	84	94
frog w/o Siam.	65	79
frog with Siam. sep.	76	86
frog with Siam. com.	75	88
pig w/o Siam.	61	81
pig with Siam. sep.	68	80
pig with Siam. com.	66	82
duck w/o Siam.	72	90
duck with Siam. sep.	75	90
duck with Siam. com.	77	90
ext. w/o Siam.	54	70
ext. with Siam. sep.	63	76
ext. with Siam. com.	62	74
mult. w/o Siam.	67	79
mult. with Siam. sep.	69	80
mult. with Siam. com.	68	81

1 .

Table 4: ADD scores on our dataset

AGH

Fig. 10: Objects from our dataset

	PC	Jetson
U-Net	0.040	0.020
Keypoints	0.035	0.040
Siamese	0.030	0.007
k-means++	0.005	0.010
PSO 200p. 3 iter.	0.037	0.060
PSO 10p. 10 iter.	0.026	0.040
overheads	0.017	0.023
Total	0.190	0.200

Table 3: Running times

	Avg	., Avg,
tracking score [%]	ADI	D ADD
	10%	20%
drill w/o Siam.	80	97
drill with Siam. sep.	83	96
drill with Siam. com	84	94
frog w/o Siam.	65	79
frog with Siam. sep.	76	86
frog with Siam. com.	75	88
pig w/o Siam.	61	81
pig with Siam. sep.	68	80
pig with Siam. com.	66	82
duck w/o Siam.	72	90
duck with Siam. sep.	75	90
duck with Siam. com.	77	90
ext. w/o Siam.	54	70
ext. with Siam. sep.	63	76
ext. with Siam. com.	62	74
mult. w/o Siam.	67	79
mult. with Siam. sep.	69	80
mult. with Siam. com.	68	81

Table 4: ADD scores on our dataset

Conclusion

- We have presented that Siamese neural network can deliver pose predictions over time, which improve the performance of the object tracking.
- We proposed an unit quaterion representation of the rotational state space for particle filter hybridized with particle swarm optimization.
- Our algorithm delivers probability distribution of object poses in contrast to recent approaches.
- Our system has been evalueted on Nvidia Jetson with resonable running time.

Deep Quaternion Pose Proposals for 6D Object Pose Tracking

Mateusz Majcher, Bogdan Kwolek

majcher@agh.edu.pl

bkw@agh.edu.pl

11 October, IWDSC 2021

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology